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A well-known Scharfetter—-Gummel {SG} scheme for convection-
dominated problems of semiconductor and gas discharge plasmas
is improved. A one-dimensional convection—diffusion equation is
considered. It is shown that the original 5G scheme is accurate if
the potential drop between two adjacent nodes is much less than
the electron temperature. To satisfy this condition a pair of addi-
tional nodes between adjacent nodes are inserted. The distance
hetween these "virtual” nodes can be choosen small enough to
obtain flux at the cell bound with the high accuracy. The number
densities at virtual nodes are found by interpolation. Tests have
shown that the accuracy of this scheme is comparable to the FCT
technigue, but in contrast it does not produce a “staircase’ distur-
bance on rapidly changing functions. © 1995 Academic Press, Inc.

1. INTRODUCTION

In this paper we will consider algorithm for the numerical
solution of one-dimensional convection—diffusion equation

an  df
—+==0 I
o ax ()
where # is the electron number density and
an
j=~D—— uk 2
J=~D="— pkn (2}

is the electron current density. Here D is the diffusion coeffi-
cient, w is the mobility, and E is the electric field strength.
Throughout this paper we consider that & = const.

Equation (1} is of great importance in various fields. Probably
most frequently it occurs in semiconductor and gas discharge
plasma simulation, In both cases it is used when hydrodynamic
description of the electron transport is valid and one can neglect
inertial terms in the momentum balance of electrons (2). Usually
{1) is nonlinear due to the fact that the drift velocity of electrons
W = —uF depends on their number density via the Poisson
equation,

In many situations Eq. (1) describes ion transport as well.

However, for convenience throughout this paper we will refer
to this equation as that of the electron mass balance.

The main difficulty is that n may change very rapidly—for
several orders of magnitude within the computationat domain.
However, it is necessary to describe the transport of low values
of # with the same accuracy as those of large n. This requirement
is related to the fact that usually the source terms are presented
in the right-hand side of (1). These sources strongly depend on
electron density and can be high in the region where n is low.
Thus the low values of n can essentially affect the accuracy of
the whole solution [1].

In 1969 Scharfetter and Gummel [2] proposed a scheme for
the numerical solution of (1). Their scheme, which will be
referred as SG, is based on the following idea. Consider a
computational cell between the half-integer points ¥ ~ % and
k + % (Fig. 1).

To obtain the expression for current density at the cell bound,
SaY Ji+12. it 1S anticipated that between two nodes, & and & +
1, £, D, and j are constant and equal to Eyvn, Dinp, and
Jetiz- Then (2) is considered as a differential equation with
respect to n on the interval (x;, X4,). Solving this equation
one obtains .
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Dy
where A, = xpqy — Xy, &= (x — x)/h, and

o= JTL 1
Dyiin

Setting x = x4 (thus & = 1) in (3), we come to the required
expression for fiiipm,

Dy
Jertz = I, (e ~ e%ner),
o

4)

where

149

0021-8991/95 $6.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.



b

150

Eri
Ek+%
e 4
E/
1 | 1 | |
k=1 k—% & kot g E+1
FIG. 1. Nodes designation.
' e*— 1
Ig -
43

Then the solution of (1) can be obtained using, for example,
the scheme

b . .
ng ny Jian — Jilne
= s (5)

T L P

where m labels the time level and S;41, = 3(S, + Si41), S being
D, E, h

Scheme (4), (5) has a very important property of monoton-
icity [3]. Since the pioneering work of Scharfetter and Gummel
this scheme and its two-dimensional variant was widely used
in semiconductor device simulation (see [4] and the literature
cited there). It was introduced to gas discharge physics by
Boeuf and Pitchford [5, 6], who applied an implicit variant of
this scheme to simulate 2D pseudospark discharge and glow
discharge in cylindrical geometry.

In this paper we first will consider generalization of the
Scharfetter-Gummel scheme to a linear field. It will be shown
that the original scheme is accurate i the potential drop berween
two adjacent nodes is much less than the electron temperature.
This condition can be very restrictive. To avoid using fine grids,
the following procedure is proposed.

Between two adjacent nodes a pair of additional nodes are
inserted in such a way that the distance between them obeys
the required condition. Densities in these “‘virtual’” nodes are
obtained using interpolation. Then the current density is calcu-
lated by (4), where the appropriate parameters are taken in
the virtual nodes. This procedure dramatically improves the
accuracy of the scheme.

The paper organization is as follows. In Section 2 the general-
tzation of the Scharfetter—Gummel zlgorithm to the linear field
is described. The space step limitation mentioned above is
obtained. Then the virtual nodes are introduced in order to
satisfy this requirement. Subsection 2.4 contains a brief formu-
lation of improved Scharfetter—Gummel (ISG} scheme. Section
3 displays the results of a test problem solution. The ISG
algorithm is compared with the exact solution and with the
result obtained by the simple SG and flux-corrected transport
(FCT) scheme. Some details of ISG realization are discussed.
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2. DESCRIPTION OF THE SCHEME

2.1. The Linear Field
Consider the field being linear between two adjacent nodes,
kand k + 1. Let E; # 0. Field E(x) then can be represented as
E(x) = E(1 + 288, (6)

where £ = (x — xh, and

AE,

2_Ek, AE}: =Fin — B (7

B::

Solving Eq. (2) with constants j,.,2, Dyyip and linear E(x),
Eqg. (6), we come to

o
() = [ - [ eXP{f(E’)}df’] exp{~f(&), (®)
k+112
where
fiy) = aly + By) )
and
o= ik,
Dk+l.’2 ‘

Comparison of (3) and (8) shows that if the field is constant,
(8} reduces to (3) if one puts 8 = 0 in (9). We conclude that
the linear field gives an additional exponent exp(ef8y?) in (8).
As y < 1 this exponent can be expanded as a power series in
the oo product, provided that condition |8 <€ 1 is satisfied.
Retaining the first-order term we receive

e = (1 + afy). (10}
This procedure is valid, provided that the inequality
phy|AE,]
afl] = < |
o] 2Dy
or

2D

h, <€ (11)
‘ HIAE|

is satisfied. Noting that the diffusion coefficient is expressed
in terms of the electron temperature via the Einstein relation
D = uT, (11) can be rewritten as
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We see that in terms of physical quantities (11) means that the
electric potential drop between two adjacent nodes should be
much less than the electron temperature. Condition (11) defines
the accuracy of the scheme. If (11) is not satisfied, the solution
obtained by the Scharfetter—Gummel scheme exhibits excessive
diffusion smoothing.

Taking into account (10}, from (8) we obtain

. E.k+1,’2 . "
Jiniz = 57 [y — e*(1 + aBnil, (13)
k2 |
where
1
1= [l + oy ay. (14)
This integral can be calculated explicitly, which gives
2 + o
L=~ 373“—3 + %(aa@ +at + 208 - 2028).  (15)

If E, = 0, the field should be normalized using E,,, and the
procedure described above is repeated (see the Appendix).

Relation (13) containes a first-order correction to the original
scheme (4). Both schemes are valid if (12) is satisfied. Condition
(12} can be very restrictive. In the cathode region of the atmo-
spheric pressure glow discharge [7] the electron temperature
is about 10 eV and in order to increase the time step it is
important to have a rather coarse grid in a high field region.
Thus on a reasonable grid the electric field varies as =10* V/
cm per cell. However, condition (12) gives k= 107* cm, which
is much less than any characteristic scale of the problem. To
avoid this limitation an interpolation procedure is applied, as
described below.

2.2. Virtual Nodes

The major idea of the scheme proposed is that in order to
satisfy condition (11) two virtual nodes are inserted between
x; and x4, in such a way that the distance between them
obeys (11) (Fig. 2). Densities at these nodes are obtained by
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interpolation of r(x) on the interval (x;, x,+,) by some appro-
priate method. Then (13) or (4) is applied, where the number
densities are replaced by their values at the virtual nodes.

Let some interpolation method be applied and, hence, one
can calculate n at any point of the interval (x,, x;.,). We insert
two virtual nodes with coordinates x, and x; between x, and
xy (Fig, 2)

A space step limitation (11) now can be rewritten as

2Dk+l:’2
h, < :
1|AE,|

(16)
where £, = xz — x, and
h,
AEU = ER - EL = ‘_'AEk.
hy

The distance between the virtual nodes #, is chosen to satisfy
condition (16). Introducing factor & <€ 1, (16) can be rewrilten
as h, = 82D,/ (|AE, ). Making simple algebraic manipula-
tions it is easy to obtain

By = Ve2Dyonhd tIAE,|. an

The virtual nodes are placed symmetrically around center point
Xerriz = 3(xy + x4-1) and, hence,

(18)
(19)

— =1
Xpp = Xppin + zhy

—_ — 1
EL,R =Einp+s AEU’

where ;i1 = (E¢ + Ep)M2, minus corresponds to the sub-
script “‘*L.7°, and plus to “‘R,”” E, and E being the field values
at the virtual nodes. Interpolation is used to obtain the densities
n, and ng in the virtual nodes x; and x. To obtain ., expres-
sion (13) can be used where the & and & + 1 values should be
replaced by the corresponding values at x, and xp. Moreover,
if a distance between the virtual nodes satisfies condition (17),
then (4) can be applied.

2.3. Interpolation

Two interpolation schemes have been used: exponential inter-
polation and tocal cubic piecewise (LCP) interpolation [8]. The
exponential interpolation is constructed as follows. To prevent
possible run-time errors it is better to interpelate n + 1 rather
than #, as normally # 2 1. At the interval (x,, x;,) this gives

+ 1
a(x) + 1= (n, + De™, . (niL——

a=h-;log .y

). 20
Alternatively, the method of [8] was used with the following
modification. It has been found that the accuracy of LCP inter-
polation of rapidly changing functions is increased if one inter-
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polates log(n(x) + 1) and then finds n(x") as exp{f3(x’>} -1,
where fi(x) is an piecewise cubic interpolation polynomial.

2.4. Scheme Formulation

Now we can summarize the results. In practice it is more
convenient to express all the parameters in terms of drift veloc-
ity W = —u£ rather than £, as usually some approximation
formuia for W(E) is available. Besides, field and velocity are
usually known at the half-integer points. Making the appropriate
transformations, the order of calculations with the scheme pro-
posed is as follows:

1. Given the parameters at the two nodes k and & + 1 of
the basic mesh, calculate the distance between the virtual nodes
h, using the relation

hy = Ve2Dinhd|Weey — Wy, @2n
where W, = (W12 + Wicip)2. Here £ <€ 1 (typically 0.01—
0.04) should be set (see further discussion). If h, = Ay, jinin
is calculated by (4). Otherwise, the following procedure is used.

2. Define the positions of the virtual nodes x,, x5 and the
corresponding velocities:

Xt X _ Ay
Xe=Ty vy

Wig=Wen=+ $AW,,

(22)
(23)

where
iy
AWU = h_ (WkH - Wk)
&

3. Define the densities #, and #; at the virtual nodes using
interpolation (20) or [8] or another.

At this point there are two possible ways to calculate jity;.
The simplest is to apply (4) on the interval (x;, xg), which we
will refer to as the ISG-0 scheme,

. 1)
Jreriz = ﬁ (n, — e%ng) (24)
where
hW o, — ]
a=— R g =2 (25)
Din o,

The more accurate approximation is obtained if one takes
into account that the field is linear between the virtual
nodes. This scheme, which will be referred as ISG-1 reduces
to

|
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1 [rp — e=(1 + o, B,)Rgl, IWLl = IWRL
vt
jk+”2 - Dk+].’2 !
— [e™ (] + e  B.) 'y — ngl, |WL| < 'WRL
hody
(26)
where
hUWL WR - “fL
a,=——; B,=——— (27)
D;z-mz B ZWL
I = L‘) (1 + a,Buyd) dy (28)
hUWR WR - WL
o = — : [ 29
! Dyiip ¢ 2We @)
1= " &0 + iy ay. (30)

The explicit expressions for I, and /] are given by (15) and
{42), respectively. If W, = W,,, = 0 a small nonzero field can
be assigned to k node to prevent run-time error.

When the current density at the cell bound is found, one can
calculate the number densities at the new time level using (5).
This completes the description of the algorithm.

2.5, Limite — 0

As has been shown, the only requirement which parameter
€ in (21) should obey is £ <€ 1. To clarify the role of this
parameter it is convenient to pass to the limit £ — 0 or,
equivalently, to the limit A, — 0 in expression for ji i
(24):

Dk+l.’2
lim jiiyp = lim (n; — e“ng) |
0 k0 \ Ry

To calculate this limit we use the exponential interpolation
(20). Taking into account (25) and the relations

ny = (e + 1) expla(aesn ~ 3hy — x}

ng=1(n,+ 1) exp{a(xﬂuz + 3h, — xk)},
we get

lir%jkﬂlz = Men(Wenn ~ aDiin)
’ (3D

Dian lo Ry T 1
hk £ Ry +1 ’

= et Wi —

where
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e = (1 + D" = (4 1) Ve, + DG+ 1)

and a is given by (20).

Evidently {31) is an approximation of the initial expression
(2) for the current density with exponential interpolation of the
number density at the cell bound. Each interpolation technique
will lead to a similar expression. Scheme (31) is a high-order
one with excessive dispersion which produces ripples on steep
gradients (see further test results). These ripples are a well-
known drawback of the high-order schemes.

We conclude that when & changes from 0 to 1 scheme (24)
transforms from a very accurate but dispersive one (31) to
a less accurate, diffusive, but monotonic Sharfetter—Gummel
algorithm (4).

3. TESTS

The quality of the numerical transport algorithm is usually
demonstrated by the calculation of a given initial profile motion
with the constant velocity. However, the advantages of the
scheme proposed can be demonstrated only if the field (velocity)
is not constant. In the case of a constant field the scheme
considered is reduced to the original SG scheme. To check the
scheme linear field

E(x) = Ax, 0=x=1,

has been taken. Constant A4, which defines the maximun field
was taken to be 107 In this field the electron fluid moves
towards x = 0 and suffers compression. Parameters w and D
were taken to be |; thus W = —Ax. The equation to be solved
is, therefore,

an  d(Axn)

d’n
— =10 32
dx? 32)
The above set of parameters specify a convection-dominated
problem which is a stringent test for the scheme proposed. To

solve (32) we neglect the diffusion term in this equation. The
convection equation

an  a(Axn)
— e —— 0
at ax 33

can be solved using the standard characteristic method which
gives
nlx, 1) = nglxefe’,

(34)

Two initial profiles nyfx) were considered. The first is a
model of the shock wave,
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1 X~ X
(x) = m +—[l +tanh( )] Ha, (35
2 o
where ¢ = 0.02. The second is a Gaussian profile,
X — xgF
no(x) = 1y + nyexp ((—G_ZUL) (36)

with ¢? = 0.04. In both cases n, = 10% n, = 10" thus the
range of the n variation is 10 orders of magnitude.

All tests were performed using 1SG-0 (24) and ISG-1 (26)
schemes. Both ISG schemes are compared with the original
Scharfetter—Gummel scheme (4) and the PHOENICAL
SHASTA flux-corrected transport algorithm [9] with a Boris—
Book flyx limiter [10]. The exact solution (34) provides a basis
for comparison.

Two uniform grids were used. The *‘fine’’ grid has 200
nodes, while the ‘‘coarse’’ grid has 100 nodes.

Figure 3a shows the motion of a “‘shock wave” when expo-
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FIG. 3. (a) ‘‘Shock wave’” transport in linear field £ = Ax: 200 cells,
Courant number 0.4, 200 time steps, & = (.01, SG—original Scharfetter—
Gummel scheme (4), ISG-0—the scheme proposed, FCT—flux-correcied
transport scheme [91. The initial profile is plotted by gridpoints. (b) The same
on the 100-cell grid, Courant number 0.2,
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nential interpolation (20) is used. The fine grid is used (note
that the initial profile is plotted by gridpoints); 200 time steps
were performed with Courant number 0.4,

Figure 3b displays the result on the coarse grid. Again 200
time steps were performed with Courant number 0.2; thus it is
with the same time step as in Fig. 3a. In both cases 1SG-0 is used.

As is seen, the curves obtained by ISG-0 and FCT on the
fine grid are almost identical and very close to the exact solution.
In contrast, the original SG method gives a very diffusive
solution which departs from the exact curve by several orders
of magnitude. On the coarse grid FCT tends to produce a
“‘staircase’” on the profile, while ISG-0 preserves the monoton-
icity.

In Fig. 4a two interpolation methods are compared on a
coarse grid. As is seen, when £ = 0.01 the scheme with expo-
nential interpolation produces unphysical oscillations. With
LCP interpolation the ISG-0 and ISG-1 curves merge together
and both are monotonic. We conclude that LCP interpolation

10 F 3

k|

o @

10 °F

210

10 7k [

a

10 °F —— 1S6=0, LCP

Y ISG—0, Exponential 3

10 *h - - - 18G-1, LCP

1G5 0.4 0.5 0.6 0.7

10 “F ' '

onp ©

10°F

=k 5 1

210 7F 2

2 E Exact 1

sk eps=0.0 b

10°F ------ gps=0.005 :

; ————— eps=0.01 E

10 3;_ - - - eps=0.02 ‘

i

3 0.4 0.5 0.5 0.7
Distance

FIG. 4. The structure of *‘shock wave’” profile. (a) Local cubic piecewise
(LCP) interpolation is compared to exponential interpolation. The long-dashed
curve obtained with (26) is merged to the solid line: 100 cells, Courant number
0.2, 200 time steps, £ = 0.01. (b) The influence of £ variation on the profile.
If & = 0 the scheme transforms to a high-order one which produces ripples.
When & is increased, the numerical solution departs from the exact one but
hecomes smooth.
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FIG. 5. Gaussian profile (dotted curve) transport; the notations and all the
conditions are the same as in Fig. 3a.

is preferable and that the main benefit in accuracy gives intro-
ducing of the virtual nodes. Accounting for the linear field
profile gives minor effect and thus (24) can be recommended.

Figure 4b shows the influence of the variation of € in (21).
When £ is increased, the ISG-0 solution tends to depart from
the exact curve and approaches the original SG solution. When
e tends to zero, the ISG-0 transforms to a high-order scheme
(as has been shown in Section 2.5) and ripples occur on a steep
gradient (Fig. 4b).

On the other hand, if £ is fixed, h, ~ 1/V|AW|, where
AW = W,,, — W,. Therefore, if variation of the drift velocity
within a cell is large, &, becomes small, and vice versa. From
this point of view, the scheme proposed acts similar to the flux-
corrected transport technique; it is less diffusive in a region of
high gradient of a drift velocity, and more diffusive when AW
became small. In real physical problems a high gradient of the
electron drift velocity is inherently related to a high gradient
of the particle number density and, hence, one might expect
the variable £, to prevent the production of unphysical ripples
on a density profile.

The analysis presented above leads to the limitation & <
1, but the actual value of this parameter should be chosen
experimentally. Our experience shows that & from the range
0.01-0.04 gives good results in most cases.

Figure 5 shows the motion of Gaussian profile on the fine
grid. LCP interpolation is used. Again the results obtained by
FCT and ISG-0 are close to each other and to the exact
solution.

The tests performed show that the accuracy of the scheme
proposed is comparable to one of the best transport schemes—
ECT. 1SG does not produce a ‘‘staircase’” on steep gradients.
The additional advantage of 1SG is that it takes into account
both convection and diffusion simultaneously.

The scheme is simple and easy to implement. Special tests
have been done to estimate the efficiency of this scheme, The
results have shown that the rates of calculations with ISG and
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FCT are almost the same. However, we believe that ISG will
be much faster en computers equipped with hardware-supported
calculation of exponents.

The accuracy of the scheme depends on & and on the interpo-
lation procedure applied. Generally, more sophisticated LCP
interpolation gives better results than simple exponential inter-
polation. However, the latter provides good result if the grid
is ““fine”” enough. _

In conclusion it should be mentioned that this scheme was
succsessfully used in quasi-1D and 2D simulation of streamer
dynamics in air. The feature of this problem is a very large
gradient of the electric field in the streamer “‘head.”” Neverthe-
less, the scheme proposed has given a stable and accurate
solution on a reasonable grid. The results of this work will be
published elsewhere.

APPENDIX

If £, = 0, the field (6) should be represented as

E(x)y = E. (1 + 28'n), (37
where n= (X - xkﬂ)/hk and
g BT B AR (38)

2Eyy, - 2E.0

Then the procedure described in Subsection 2.1 is repeated,
leading to the expression for jiiiz,

Dk+|f2

——— e+ a'B ) e — ], (39
mdi(ee', B)

Jevin =

where

(55
o = i‘% (40)
and
Ii(a, b) = j”l (1 + aby?) dy @0
St 2k gt 2ab + 2a). (42)
a a
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